
Реклоузер Вакуумный Автоматический PBA-ELZ-6(10) У1

Руководство по эксплуатации

1.ОБЩИЕ СВЕДЕНИЯ

1.1 Условное обозначение реклоузера

1.2 Область применения

Реклоузер вакуумный автоматический PBA-ELZ-6(10) У1 представляет собой внешний высоковольтный вакуумный выключатель с номинальным напряжением 10 кВ. Предназначен для коммутации электрических цепей в сетях трехфазного переменного тока с частотой 50 Гц. Устройство в основном применяется для отключения и включения номинального тока, тока перегрузки и тока короткого замыкания в энергетических системах. Реклоузер можно использовать на подстанциях, промышленных и горнодобывающих предприятиях, городских и сельских энергосетях для защиты и контроля, в местах частых коммутаций и в городских автоматических распределительных сетях.

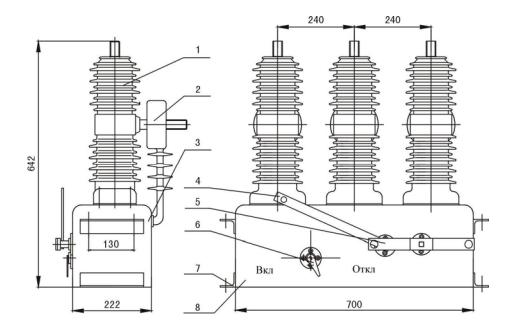
1.3 Условия эксплуатации

- высота над уровнем моря не более 1000 м;
- атмосферное давление от 86,6 кПа (650 мм рт. ст.) до 106,7 кПа (800 мм рт. ст.);
- температура окружающего воздуха от -45 до +40;
- относительная влажность воздуха до 80 % при температуре +20 $^{\circ}$ C;
- окружающая среда невзрывоопасная, пожаробезопасная, не содержит токопроводящей пыли, химически активного газа и испарений.
- отсутствие сильной тряски, вибрации, ударов.

1.4 Основные технические характеристики указаны в табл. №1

Таблина №1

	Таолица лет	
Описание	Единица	Данные
	измерения	
Номинальное напряжение	кВ	10
Выдерживаемое повышенное напряжение в		42
теч.1мин.		
Выдерживаемое повышение грозового		75
разряда (пиковое)		
Номинальный ток	A	630
Номинальный открытый ток К3	кА	20
Номинальный закрытый ток К3(пиковый)		50
Номинальный кратковременный ток в теч.4с		20
Номинальный пиковый кратковременный ток		50


Коммутационный цикл		B-0.3c-BO-180c-BO
Номинальное количество разрывов дуги		50
Механический ресурс		30000
Номинальное рабочее напряжение	В	220(пост./перем.ток)
Номинальное напряжение вторичной цепи		220(пост./перем.ток)
Номинальный ток трансформаторов тока		50; 75; 100; 150; 200; 300;
		400: 600: 800: 1000
Тип привода		Пружинный (ручной/авто)
Межфазное расстояние	MM	240
Габаритные размеры	MM	700x222x642
Bec	КГ	110

Примечание: выдерживаемое напряжение изоляции должно быть проверено после соответствующей регулировки при высоте не более 1000м над уровнем моря.

2.УСТРОЙСТВО РЕКЛОУЗЕРА

2.1 Схема реклоузера

Реклоузер вакуумный автоматический PBA-ELZ-6(10) состоит из встроенных залитых полюсов, трансформаторов тока, пружинного механизма и рамы, являющейся основанием выключателя. Пружинный механизм и полюса установлены на раме. Конструкция выключателя отличается простотой и высокой точностью сборки, а также легкостью в установке. Реклоузер вакуумный автоматический PBA-ELZ-6(10) соответствует требованиям по гашению дуги в вакууме и перемещению контактов без дополнительной регулировки. Он установлен на раме-основании из алюминиевого сплава, оборудован внешним механизмом ручного оперативного включения.

- 1. Встроенный залитый полюс.
- 2. Трансформатор тока.
- 3. Рама-основание из алюминиевого сплава.
- 4. Рукоятка ручного взвода пружины

- 5. Рукоятка ручного включения-отключения.
- 6. Указатель включения-отключения
- 7. Монтажная панель.
- 8. Пружинный механизм (привод).

2.2 Встроенный залитый полюс

В реклоузере применена технология полной изоляции полюсов. Конструкция залитого полюса включает в себя камеру дугогасительную вакуумную, контур проводника и изоляционное основание. Изолятор представляет собой эпоксидную оболочку полюса, сделанную по технологии APG методом перфоривания.

2.3 Рабочая часть выключателя

Реклоузер вакуумный автоматический PBA-ELZ-6(10) является устройством с моторным приводом, имеющим функции ручного взвода пружины вала выключателя, ручного включения-отключения и защиты от сверхтоков. Механизм состоит из пружины, устройства накопления энергии, электромагнита максимального тока, катушек включения-отключения, системы ручного включения-отключения, блок-контактов выключателя и указателя положения выключателя. Механический ресурс выключателя составляет 10000 циклов.

3. ПРИНЦИП РАБОТЫ РЕКЛОУЗЕРА

3.1 Принцип гашения дуги

Принцип работы выключателя основан на гашении электрической дуги, возникающей при размыкании контактов в вакууме, причем ток через вакуумную камеру проходит только в короткий промежуток времени при выполнении операций включения и отключения. Высокая электрическая прочность вакуумного промежутка обеспечивает надежное гашение дуги. Во включенном положении номинальный ток и токи короткого замыкания проходят через главные контакты, в отключенном положении происходит размыкание главных контактов с образованием видимого разрыва. Так как коммутационные процессы происходят внутри вакуумных камер, выключатель не образует выбросов продуктов горения дуги, как при отключении, так и при включении. Благодаря использованию продольного магнитного поля для контроля возникновения электрической дуги в вакууме, вакуумный выключатель имеет хорошие показатели по надежности и коммутационному ресурсу.

3.2 Принцип работы привода выключателя

3.2.1 Операция взвода пружины (накопления энергии)

Схема механизма взвода пружины (накопления энергии) 2(a) (b):

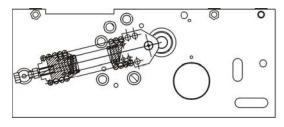


Рис. 2(a) Положение невзведенной пружины

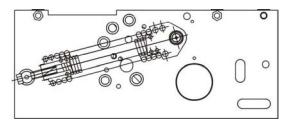
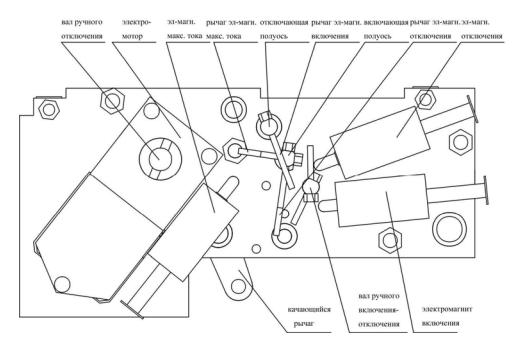



Рис. 2 (b)Положение взведенной пружины

Принцип включения: Включение выключателя происходит при подаче питания на катушку электромагнита включения или рычагом для ручного включения. При подаче питания на катушку электромагнита включения, якорь электромагнита включения, втягивается в катушку и поворачивает (через механизм свободного расцепления) вал выключателя. Вал выключателя через изоляционные тяги и узлы поджатия замыкает контакты КДВ. Во включенном положении вал выключателя удерживается механической зашелкой.

3.2.2 Операции включения-отключения и повторного включения

Операция отключения: отключение выключателя происходит при воздействии электромагнита оперативного отключения или кнопки ручного отключения, которые воздействуют на защелку механизма свободного расцепления. Защелка выходит из зацепления с роликом. После этого, механизм свободного расцепления складывается, поворачивается вал выключателя (под действием пружин поджатия и отключения), и происходит отключение. Конечное положение вала выключателя в отключенном состоянии определяется демпфером.

Ручное отключение: конструкцией выключателя предусмотрена возможность ручного отключения. Оно производится специальной рукояткой отключения, на которой размещена пружина ручного отключения. После сопряжения рукоятки отключения с валом ручного отключения необходимо повернуть рукоятку против часовой стрелки до полного отключения выключателя, что равно воздействию электромагнита отключения. Запас энергии пружины отключения достаточен для обеспечения полного нормативного отключения.

Операция повторного включения: после того, как выключатель отключился с использованием энергии пружины, механизм продолжает запасать энергию для пружины даже в отключенном состоянии. Таким образом, в случае получения сигнала на повторное включение, механизм выключателя будет использовать накопленную энергию.

Операция включения: после получения сигнала «включения» ток включения от блока управления протекает по катушке включения, сердечник втягивается катушкой включения электромагнита, приводя в движение вставку, которая проворачивает промежуточный вал, который через тягу проворачивает основной вал выключателя. Затем вместе с основным валом движется вверх изоляционная тяга и подвижный контакт КДВ,

контакты КДВ замыкаются, сердечник и связанная с ним изоляционная тяга продолжают двигаться вверх и пружинами поджатия поджимают контакты КДВ. Сердечник достигает своего крайнего положения, замыкая цепь включения постоянного магнита (магнитная защелка) и тем самым цепь включения постоянного магнита (магнитная защелка) и тем самым обеспечивает удержание контактов КВД во включенном положении с необходимым уровнем их поджатия, затем катушка включения обесточивается.

Операция ручного включения: после сопряжения рукоятки ручного включения с валом ручного включения, поверните рукоятку включения против часовой стрелки для взведения пружины, что приведет к работе пружинного привода и электромагнитного привода.

Операция с использованием электромагнита максимального тока: электромагниты приводятся в действие только при прохождении тока аварийной перегрузки, например, в случае заклинивания механизма, или при наличии тока короткого замыкания, и воздействуют на механизм отключения выключателя.

3.3 Электрическая схема управления выключателем

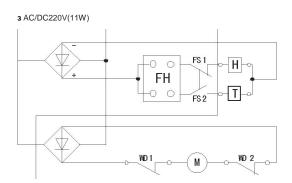


Рис.4 Цепи управления выключателем

«+», «-»—положительный и отрицательный полюса выпрямителя

FS1, FS2—блок-контакт выключателя

WD1, WD2—переключатели схемы взвода пружины

Н, Т — электромагниты включения-отключения

FH — блок управления выключателя

М — двигатель взвода пружины

Когда пружина не взведена, переключатели WD1, WD2, находится в нормально закрытом положении, моторный привод M заставляет пружину накапливать энергию, после чего WD1, WD2 разрывают цепь, отключая подачу питания, и мотор прекращает работу.

После взвода пружины, привод готов к операции включения. При подаче сигнала на включение электромагнит включения, воздействуя на привод, включает выключатель, блок-контакт разрывает цепь питания электромагнита включения. Пружинный механизм воздействует на контакты WD1, WD2, что ведет к замыканию цепи. Моторный привод М взводит пружину, подготавливая привод к включению. При полном взводе пружины контакты WD1, WD2 размыкаются.

При подаче сигнала на отключение, электромагнит Т воздействует на привод, который отключает выключатель. Блок-контакт разрывает цепь питания электромагнита Т. После этого происходит взвод пружины, так как WD1, WD2 замыкают цепь мотора М.

4. ТРАНСПОРТИРОВАНИЕ, ПРИЕМ И ХРАНЕНИЕ

4.1 Транспортирование

Транспортирование реклоузера производится в вертикальном положении в упаковке, которая защищает реклоузер от попадания атмосферных осадков и механических повреждений. Условия транспортирования реклоузера выполняются согласно техническим условиям.

4.2 Прием

После получения реклоузера:

- 1) Проверьте целостность упаковки
- 2) Проверьте наличие и заполнение приложенных документов Проверьте технические характеристики в паспорте оборудования, наличие соответствующих сертификатов.

4.3 Хранение

Реклоузер хранить в закрытых помещениях с естественной вентиляцией без искусственно регулируемых климатических условий, где колебания температуры и влажности воздуха существенно меньше, чем на открытом воздухе (например, каменные, бетонные, металлические с теплоизоляцией и другие хранилища). Температура воздуха от плюс 40 С до минус 40 С. Относительная влажность воздуха 98% при температуре 25 С (верхнее значение). Срок сохраняемости реклоузера в упаковке и консервации предприятия-изготовителя - один год.

Если реклоузер освобождены от упаковки, а начало монтажа по каким-либо причинам задерживается, необходимо покрыть реклоузер бумагой, брезентом или другими материалами для предохранения от запыления и попадания влаги. При хранении распакованных камер необходимо не реже одного раза в 6 месяцев проводить осмотр.

5. ПРИЛАГАЕМЫЕ ДОКУМЕНТЫ

- Действительный сертификат.
- Руководство по эксплуатации.
- Упаковочный лист.